3.387 \(\int \frac {d+e x^2}{\sqrt {a+b x^2-c x^4}} \, dx\)

Optimal. Leaf size=385 \[ \frac {\sqrt {\sqrt {4 a c+b^2}+b} \sqrt {1-\frac {2 c x^2}{b-\sqrt {4 a c+b^2}}} \sqrt {1-\frac {2 c x^2}{\sqrt {4 a c+b^2}+b}} \left (e \left (b-\sqrt {4 a c+b^2}\right )+2 c d\right ) F\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2+4 a c}}}\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )}{2 \sqrt {2} c^{3/2} \sqrt {a+b x^2-c x^4}}-\frac {e \left (b-\sqrt {4 a c+b^2}\right ) \sqrt {\sqrt {4 a c+b^2}+b} \sqrt {1-\frac {2 c x^2}{b-\sqrt {4 a c+b^2}}} \sqrt {1-\frac {2 c x^2}{\sqrt {4 a c+b^2}+b}} E\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2+4 a c}}}\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )}{2 \sqrt {2} c^{3/2} \sqrt {a+b x^2-c x^4}} \]

[Out]

1/4*EllipticF(x*2^(1/2)*c^(1/2)/(b+(4*a*c+b^2)^(1/2))^(1/2),((b+(4*a*c+b^2)^(1/2))/(b-(4*a*c+b^2)^(1/2)))^(1/2
))*(2*c*d+e*(b-(4*a*c+b^2)^(1/2)))*(1-2*c*x^2/(b-(4*a*c+b^2)^(1/2)))^(1/2)*(b+(4*a*c+b^2)^(1/2))^(1/2)*(1-2*c*
x^2/(b+(4*a*c+b^2)^(1/2)))^(1/2)/c^(3/2)*2^(1/2)/(-c*x^4+b*x^2+a)^(1/2)-1/4*e*EllipticE(x*2^(1/2)*c^(1/2)/(b+(
4*a*c+b^2)^(1/2))^(1/2),((b+(4*a*c+b^2)^(1/2))/(b-(4*a*c+b^2)^(1/2)))^(1/2))*(b-(4*a*c+b^2)^(1/2))*(1-2*c*x^2/
(b-(4*a*c+b^2)^(1/2)))^(1/2)*(b+(4*a*c+b^2)^(1/2))^(1/2)*(1-2*c*x^2/(b+(4*a*c+b^2)^(1/2)))^(1/2)/c^(3/2)*2^(1/
2)/(-c*x^4+b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 385, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {1202, 524, 424, 419} \[ \frac {\sqrt {\sqrt {4 a c+b^2}+b} \sqrt {1-\frac {2 c x^2}{b-\sqrt {4 a c+b^2}}} \sqrt {1-\frac {2 c x^2}{\sqrt {4 a c+b^2}+b}} \left (e \left (b-\sqrt {4 a c+b^2}\right )+2 c d\right ) F\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2+4 a c}}}\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )}{2 \sqrt {2} c^{3/2} \sqrt {a+b x^2-c x^4}}-\frac {e \left (b-\sqrt {4 a c+b^2}\right ) \sqrt {\sqrt {4 a c+b^2}+b} \sqrt {1-\frac {2 c x^2}{b-\sqrt {4 a c+b^2}}} \sqrt {1-\frac {2 c x^2}{\sqrt {4 a c+b^2}+b}} E\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2+4 a c}}}\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )}{2 \sqrt {2} c^{3/2} \sqrt {a+b x^2-c x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x^2)/Sqrt[a + b*x^2 - c*x^4],x]

[Out]

-((b - Sqrt[b^2 + 4*a*c])*Sqrt[b + Sqrt[b^2 + 4*a*c]]*e*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (
2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*EllipticE[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]], (b + Sqrt
[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])])/(2*Sqrt[2]*c^(3/2)*Sqrt[a + b*x^2 - c*x^4]) + (Sqrt[b + Sqrt[b^2 + 4*
a*c]]*(2*c*d + (b - Sqrt[b^2 + 4*a*c])*e)*Sqrt[1 - (2*c*x^2)/(b - Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b +
Sqrt[b^2 + 4*a*c])]*EllipticF[ArcSin[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 + 4*a*c]]], (b + Sqrt[b^2 + 4*a*c])
/(b - Sqrt[b^2 + 4*a*c])])/(2*Sqrt[2]*c^(3/2)*Sqrt[a + b*x^2 - c*x^4])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 1202

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Dist[(Sqrt[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)])/Sqrt[a + b*x^2 + c*x^4], Int[(d + e*x^2)/(Sqr
t[1 + (2*c*x^2)/(b - q)]*Sqrt[1 + (2*c*x^2)/(b + q)]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c
, 0] && NegQ[c/a]

Rubi steps

\begin {align*} \int \frac {d+e x^2}{\sqrt {a+b x^2-c x^4}} \, dx &=\frac {\left (\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}}\right ) \int \frac {d+e x^2}{\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}}} \, dx}{\sqrt {a+b x^2-c x^4}}\\ &=-\frac {\left (\left (b-\sqrt {b^2+4 a c}\right ) \left (-\frac {2 c d}{b-\sqrt {b^2+4 a c}}-e\right ) \sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}}\right ) \int \frac {1}{\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}}} \, dx}{2 c \sqrt {a+b x^2-c x^4}}-\frac {\left (\left (b-\sqrt {b^2+4 a c}\right ) e \sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}}\right ) \int \frac {\sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}}}{\sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}}} \, dx}{2 c \sqrt {a+b x^2-c x^4}}\\ &=-\frac {\left (b-\sqrt {b^2+4 a c}\right ) \sqrt {b+\sqrt {b^2+4 a c}} e \sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}} E\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2+4 a c}}}\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )}{2 \sqrt {2} c^{3/2} \sqrt {a+b x^2-c x^4}}+\frac {\sqrt {b+\sqrt {b^2+4 a c}} \left (2 c d+\left (b-\sqrt {b^2+4 a c}\right ) e\right ) \sqrt {1-\frac {2 c x^2}{b-\sqrt {b^2+4 a c}}} \sqrt {1-\frac {2 c x^2}{b+\sqrt {b^2+4 a c}}} F\left (\sin ^{-1}\left (\frac {\sqrt {2} \sqrt {c} x}{\sqrt {b+\sqrt {b^2+4 a c}}}\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )}{2 \sqrt {2} c^{3/2} \sqrt {a+b x^2-c x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.26, size = 293, normalized size = 0.76 \[ -\frac {i \sqrt {\frac {2 c x^2}{\sqrt {4 a c+b^2}-b}+1} \sqrt {1-\frac {2 c x^2}{\sqrt {4 a c+b^2}+b}} \left (\left (e \left (b-\sqrt {4 a c+b^2}\right )+2 c d\right ) F\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {-\frac {c}{b+\sqrt {b^2+4 a c}}} x\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )+e \left (\sqrt {4 a c+b^2}-b\right ) E\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {-\frac {c}{b+\sqrt {b^2+4 a c}}} x\right )|\frac {b+\sqrt {b^2+4 a c}}{b-\sqrt {b^2+4 a c}}\right )\right )}{2 \sqrt {2} c \sqrt {-\frac {c}{\sqrt {4 a c+b^2}+b}} \sqrt {a+b x^2-c x^4}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x^2)/Sqrt[a + b*x^2 - c*x^4],x]

[Out]

((-1/2*I)*Sqrt[1 + (2*c*x^2)/(-b + Sqrt[b^2 + 4*a*c])]*Sqrt[1 - (2*c*x^2)/(b + Sqrt[b^2 + 4*a*c])]*((-b + Sqrt
[b^2 + 4*a*c])*e*EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c]))]*x], (b + Sqrt[b^2 + 4*a*c])/(b
 - Sqrt[b^2 + 4*a*c])] + (2*c*d + (b - Sqrt[b^2 + 4*a*c])*e)*EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[-(c/(b + Sqrt[b^
2 + 4*a*c]))]*x], (b + Sqrt[b^2 + 4*a*c])/(b - Sqrt[b^2 + 4*a*c])]))/(Sqrt[2]*c*Sqrt[-(c/(b + Sqrt[b^2 + 4*a*c
]))]*Sqrt[a + b*x^2 - c*x^4])

________________________________________________________________________________________

fricas [F]  time = 0.72, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c x^{4} + b x^{2} + a} {\left (e x^{2} + d\right )}}{c x^{4} - b x^{2} - a}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c*x^4 + b*x^2 + a)*(e*x^2 + d)/(c*x^4 - b*x^2 - a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e x^{2} + d}{\sqrt {-c x^{4} + b x^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)/sqrt(-c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 364, normalized size = 0.95 \[ -\frac {\sqrt {2}\, \sqrt {-\frac {2 \left (-b +\sqrt {4 a c +b^{2}}\right ) x^{2}}{a}+4}\, \sqrt {\frac {2 \left (b +\sqrt {4 a c +b^{2}}\right ) x^{2}}{a}+4}\, \left (-\EllipticE \left (\frac {\sqrt {2}\, \sqrt {\frac {-b +\sqrt {4 a c +b^{2}}}{a}}\, x}{2}, \frac {\sqrt {-\frac {2 \left (b +\sqrt {4 a c +b^{2}}\right ) b}{a c}-4}}{2}\right )+\EllipticF \left (\frac {\sqrt {2}\, \sqrt {\frac {-b +\sqrt {4 a c +b^{2}}}{a}}\, x}{2}, \frac {\sqrt {-\frac {2 \left (b +\sqrt {4 a c +b^{2}}\right ) b}{a c}-4}}{2}\right )\right ) a e}{2 \sqrt {\frac {-b +\sqrt {4 a c +b^{2}}}{a}}\, \sqrt {-c \,x^{4}+b \,x^{2}+a}\, \left (b +\sqrt {4 a c +b^{2}}\right )}+\frac {\sqrt {2}\, \sqrt {-\frac {2 \left (-b +\sqrt {4 a c +b^{2}}\right ) x^{2}}{a}+4}\, \sqrt {\frac {2 \left (b +\sqrt {4 a c +b^{2}}\right ) x^{2}}{a}+4}\, d \EllipticF \left (\frac {\sqrt {2}\, \sqrt {\frac {-b +\sqrt {4 a c +b^{2}}}{a}}\, x}{2}, \frac {\sqrt {-\frac {2 \left (b +\sqrt {4 a c +b^{2}}\right ) b}{a c}-4}}{2}\right )}{4 \sqrt {\frac {-b +\sqrt {4 a c +b^{2}}}{a}}\, \sqrt {-c \,x^{4}+b \,x^{2}+a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x)

[Out]

-1/2*e*a*2^(1/2)/((-b+(4*a*c+b^2)^(1/2))/a)^(1/2)*(-2*(-b+(4*a*c+b^2)^(1/2))/a*x^2+4)^(1/2)*(2*(b+(4*a*c+b^2)^
(1/2))/a*x^2+4)^(1/2)/(-c*x^4+b*x^2+a)^(1/2)/(b+(4*a*c+b^2)^(1/2))*(EllipticF(1/2*2^(1/2)*((-b+(4*a*c+b^2)^(1/
2))/a)^(1/2)*x,1/2*(-2*(b+(4*a*c+b^2)^(1/2))/a*b/c-4)^(1/2))-EllipticE(1/2*2^(1/2)*((-b+(4*a*c+b^2)^(1/2))/a)^
(1/2)*x,1/2*(-2*(b+(4*a*c+b^2)^(1/2))/a*b/c-4)^(1/2)))+1/4*d*2^(1/2)/((-b+(4*a*c+b^2)^(1/2))/a)^(1/2)*(-2*(-b+
(4*a*c+b^2)^(1/2))/a*x^2+4)^(1/2)*(2*(b+(4*a*c+b^2)^(1/2))/a*x^2+4)^(1/2)/(-c*x^4+b*x^2+a)^(1/2)*EllipticF(1/2
*2^(1/2)*((-b+(4*a*c+b^2)^(1/2))/a)^(1/2)*x,1/2*(-2*(b+(4*a*c+b^2)^(1/2))/a*b/c-4)^(1/2))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {e x^{2} + d}{\sqrt {-c x^{4} + b x^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^2+d)/(-c*x^4+b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)/sqrt(-c*x^4 + b*x^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {e\,x^2+d}{\sqrt {-c\,x^4+b\,x^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x^2)/(a + b*x^2 - c*x^4)^(1/2),x)

[Out]

int((d + e*x^2)/(a + b*x^2 - c*x^4)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {d + e x^{2}}{\sqrt {a + b x^{2} - c x^{4}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**2+d)/(-c*x**4+b*x**2+a)**(1/2),x)

[Out]

Integral((d + e*x**2)/sqrt(a + b*x**2 - c*x**4), x)

________________________________________________________________________________________